Proceedings of IEEE Asia Pacific Conference on Circuits and Systems '96
November 18 ~21, 1996, Seoul, Korea

Design Verification of Complex Microprocessors

Joonseo Yim, Changjae Park, Wooseung Yang, Hunseung Oh, Hoon Choi,
Seungjong Lee, Nara Won, In-Cheol Park and Chong-Min Kyung
Department of Electrical Engineering

: ' KAIST,
373-1 Kusong-Dong, Yusong-Gu, Taejon, 305-701, Korea
Tel: 82-42-866-0700 |
Fax: 82-42-866-0702
e-mail: kyung@dalnara.kaist.ac.kr

Abstract— As the complexity of micropro-
cessor increases, functional verification becomes
more difficult and emerges as the bottleneck of
the design cycle. In ‘this paper, we suggest
a functional verification methodology, especially
for the compatible microprocessor design. To
guarantee the perfect compatibility with previ-
ous microprocessors, we developed these C mod-
els in different representation levels, i.e., Polaris,
MCV{Micro-Code Verifier) and StreC. An instruction
behavioral level C model(Polaris) is verified us-
ing the slowed-down PC, In the implementation
of micro-architecture, a micro-operational level
model(MCV) and RTL model(StreC), both writ-
ten in C, are co-simulated with consistency check-
ing({PC) between these two models. The simula-
tion speed of C models makes it possible to test
the “real-world” application programs on the C
model with a software board model(VPC). To in-
crease the confidence level of verifications, Pro-
filer reports the verification coverage of the test

program, which is fed vack to the automatic test -

programi generator(Pandora). Restartability feature
also helps significantly reduce the total simulation
time. Using the proposed verification methodol-
ogy, we designed and verified the K486, an Intel
486-compatible microprocessor successfully.

I. INTRODUCTION

The advancement of semiconductor technology has
made it feasible to integrate more than ten million
transistors on a single chip and to operate at the
clock speed of several hundred MHz. This astound-
ing chip complexity has resulted in difficulties in the
verification(l, 2, 3; 4, 5, 6, 7). Moreover, recent mi-
croprocessors tend to maintain the instruction-level
compatibility with the previous ones which saves
“huge efforts for application software development[2].
Though compatibility can be best guaranteed by

0-7803-3702-6/96/35.0091996 TEEE

an exhaustive simulation with real application pro-
grams, the simulation time increases drastically as
the design complexity increases and has been a bot-
tleneck in a complex microprocessor design.

Therefore, it is crucial to verify the functionality
of design and eliminate errors at an early stage of
the design. Eradicating the functional bugs which
are alive until the final gate level simulation requires
excessively large amount of computing time and de-
bugging efforts. Efficient verification methodologies
become vital to the success of microprocessor design
and their significance will continue to increase as we
move into more complex designs.

Recently, the verification crisis of microprocessor
design leads to hot research issues both in academia
and industry. The hardware emulation[Z], formal
verification[1] and cycle-based simulation[§] have be-
come the state-of-the-art verification methodologies.
The cost of emulation hardware is very high and re-
quires that the gate level design be already finished.
Therefore, it requires large turnaround penalty to
fix gate-level bugs. The hardware description lan-
guage(HDL) such as VHDL and Verilog is a conve-
nient method to describe a hardware, and a cycle-
based simulation shows a clear simulation perfor-
mance advantage over an event-driven simulator(9].
On' the other hand, the general purpose Verilog
simulator is much slower than the custom-tailored
simulation.using C language. Although hardware
accelerators[10] yield significant speed-up for the
gate-level design, they do not provide fundamental
solution for the RTL or even for the behavior level de-
sign. In this paper we suggest a low-cost simulation
method based on three RTL C models, i.e., behav-
ioral level, micro-operational level and RTL, and also
the overall verification methodology using slowed-
down PC, software system modeling, and IPC(Inter
Proc¢ess Communication). ‘

The proposed verification methodology is applied
to the K486, which is Intel 80486 compatible micro-

PL4.1 441

processor. This paper is:organized .as follows. - A
proposed functional verification methodology is de-
scribed in section 2. Section 3 deals with the pro-
ductivity issue such as test program generation, test
coverage analysis and restartability feature. Finally
section 4 shows someé verification results. - B

II. FUNCTIONAL VERIFIGATION °

A. Design Flow

A traditional top-down design flow for micropro-
cessors is presented in Fig. 1(a). From the design.
specification, design is gradually refined and moved

down to the physical implementation level. An im-

portant problem in the top-down design flow is how"

to maintain the consistency between the consecu-
tive design levels. As shown in Fig. 1(b), we divide
the description level in more detail such as Cy, Cs
and C5, which represent the model of microprocessor
written in G- for behavioral, micro-operational and
RTL respectively.

level | model | level of description | language
C; | Polaris | Instruction béhavior - C
C» MOV Micro-operation* C
Cy StreC - ‘ RTL : C:.
\A Vi - RTL Verilog

Specification .- . Specification =
PITIITFITFIITI7 TTTITTITII7Z 7777

<

7 Verilo

physical-layout

BRI s . o . ®

physical layout
27777777777 77777~

Fig. 1. (a) Traditvjonzﬂ» vs. (b) proposed des:igll flow for
microprocessors: T :

In our simulation-based approaches for micropro-
cessor design, ‘RTL design using C language is co-
simulated with a reference model,.i.e., a behavioral

level model or micro-operation level model. The.

consistency -1s confirmed by interprocess communi-
cations(IPC) in UNIX[11}. Through the whole de-
sign proceédure of K486 microprocessor, we have used
clean-room’ and top~down -approach: for the design
and: verification as shown in Fig. 2.

B. Instruction Behavg'or Verification

Once the knowledge on the behavior of the instruc-

tion .set is. $peciﬁed,_ the instruction set ‘simulatoyr,
called Polarss is built. As Table I shows, Polaris

442

- Polaris : Behavior Model
MCV: Micro-operation Leve

StreC: RTL level

ﬁicro Architecture Desig

ull Eustom Desig

Bimulation (acceleration)

-Functional
verification

Physical
implermentation

Fig: 2. K486 Design flow

describes the behavior of X86 instruction sets. It
does' not:describe the detailed architecture such as
pipelining, superscalar instruction pairing, parallel .
functional units, cache and buffering.. Representing .
a higher-abstraction:level allows us to produce a ref-.
erence model that contains very few bugs and runs
at over 100 times the-speed-ofi Verilog RTL model:
This execution speed of Polaris makes it. possible to
run the “real-world”? programs.consisting of several .
billion instructions on software-model. This is Im-
possible’ with: commercial. cycle-based simulater or
gate-level HDL simulation even: with hardware ac-
celeration.

To . verify - the instruction -level compatibility of
Polaris, the slowed-down PC. without. CPU called
CMV(C Model -Verifier) is used -as. shown .in
Fig. 3. The host-computer emulates the instructions
through Pelaris and: the slowed-down PC is used as
PC mother board and peripherals. The slowed-down
PC and host computer are connected through thein-
terface board which contains several FPGA. chips to
emulate the bus interface unit of the microproces-
sor with the buffer circuit whichireceives and sends
messages from and to the host computer.

The message contains information on the bus cy-
cle which should be performed: in microprocessor
through input/output pads. There is a minimum
clock frequency,: fmin, below which the stable oper-
ation of theslowed-down PC is nct possible. If fin
is less than the frequency of the Polaris, then thein-
terface ¢ircuit can -be very simple, otherwise a com-
plex circuit is required in order to provide a buffer-
ing and synchronization mechanism between slowed-
down PC and host computer. :

PL4.2

Interface
Board

Slow-downed PC

Host Computer

ngther Instruction
oard Behavior
without C model
(polarls)
HW sw

Fig. 3.-H/W and S/W co-simnulation environment called
CMV for the verification of C model

C. Reference Model

Once the instruction behavior of Polaris is verifie
using CMYV, the Polaris becomes a golden-reference
model for further detailed design stages. But for
the micro-architecture level or RTL, the simulation
speed degradation is inevitable. Then the slowed-
down PC can no longer be used for slow simula-
tion model less than 100 KHz. Therefore a software
model of PC environment is needed for the micro-
architecture level and RTL simulation.

To verify all the cases which can occur in real sys-
tem, such as hardware interrupts, multiple memory
and I/O cycles, it is necessary to simulate through
real-world programs rather than by instructions. To
run the real-world programs, such as MS-DOS, Win-
dow 3.1, Linux, Window95, and application pro-
grams in design model, a software model of system
board called VPC(Virtual PC) is developed. The PC
environment was modeled in UNIX workstation us-
ing X window system and consists of memory system,
hard/floppy disk, interrupt controller, video display,
timer and so on as shown in Fig. 4. ,

For -the CISC . microprocessors and FPU, one
macro instruction consumes multiple cycles, there-
fore one macro instruction is subdivided into a num-
ber of micro-operations which is executed in one
clock cycle. Micro-operations are closely related
to the datapath hardware or exception handling
scheme. MCV(Micro Code Verifier) is a C model
describing the micro-operation level behavior. Nei-
ther Polaris nor MCV exactly matches the timing
details as obtained via RTL model. However, the
speed advantage of Polaris and MCV makes them to
be used as “golden” reference model of RTL micro-
architecture design.

D. StreC : RTL C Model

Traditionally, RTL description is based on HDL
such as Verilog. To achieve high simulation speed,
we described RTL operation in C language. This

PL4.3

Polaris

IPC IPC

strec |24 2
Ci: Ccz ;- Q3

Real
PC board

System Board Model { VPC)

[[M{K_qbwﬂ [Video Disptay | [OMA }{Hard/Fioppy Disk | [imterrupt cmwb}

Verilog

i)
Real
PC board

Fig. 4. Co-simulation environment for different design
models(i.e., Polaris, MCV, StreC and Verilog) with
VPC(Virtual PC). IPC dynamically checks the consistency
between models during the simulation

TABLE 1
DEscrIPTION OF CPU MODELS IN VARIOUS LEVELS
d L model [description I features] code lines I
Polaris | Macro instruction behavior register 9,675
MCV Micro-operation behavior register 18,534
internal bus
StreC clock-level RTL Flip-flop,latch 55,415
Phi 1 edge, Phi 1 level internal bus
Phi 2 edge, Phi 2 level combinational
pipeline -
Verilog | Clock and event-based RTL | Flip-flop,latch 35,223
HDL internal bus
combinational
pipeline
timing

model called StreC accurately describes the cycle-by-
cycle synchronous logic behavior as shown in Fig. 5.
All the registers, combinational signals and clocks
are declared as global variables. All the signals are
categorized into three types : flip-flop, latch and
combinational signal. All the flip-flops are updated
simultaneously at the edge of clocks, P1E or P2E.
The combinational logics are evaluated at the mid-
dle point of clock phase P1L and P2L, whilethe latch
is evaluated only one of transparent period, P1L or
P2L. Top module calls all the subroutines for each
block in succession at the two clock edges and two
clock levels. ‘

As StreC is not event-driven, special care should
be taken to allow signals to flow correctly between
modules. Signal Flow Graph(SFG), which represents
the precedence relations and temporal relations; is
very useful for correcting many tricky timing prob-
lems which, although unveiled during the C-level
simulation, can later be detected as hardware bugs.

To describe the synchronous circuit operation in C
is not a simple job, it requires cautious efforts such
as static signal‘ordering and asynchronous loop re-
moval. But most of the design time is consumed by
simulation rather than the description of design it-
self.

The speed advantage of C over general-purpose
HDL is liken to the assembly programming over

443

phil_edge()
pF
!

assignReg(FE1);
assignReg(FF2):
assignReg(FES);

.
';?hi 1_tevel()

Corabl = f1(FF1);
Comb2 = {2(FFLFF2};

phi2_edge()
1
{

assignReg(FF3);
D Fiip-fiop - .~

assignReg(FF4);
EzhiZ_level()
t

Comb3 = f3(FF4):

Combinational
Logic Cluster

Combs = £5(Comb3);
, Latchl = combd;
P2E PtE '

@ . v) . ' ©
Fig. 5. (a)Signal Flow Graph showing the clock timing of
flip-flops(FF’s) and latches, (b) symbols for SFG and (c) the
corresponding RTL C description, 2-phase clocking scheme

was assumed. (In cycle-based simulation, phil is simply
assumed to be the complement of phi2)

compllel assisted high level language programmlng.

Even though the hardware description using C is dif-*

ficult than the well-formalized VHDL or Verilog.in
many aspects, its simulation speed can be very fast
than the general-purpose commercial simulation en-
gines. StreC was mainly used to design and debug
the micro-architectiire of K486. The RTL model runs
program at 1400 cycle/sec as shown in Table II.

E. Gate-Level Verilog Simulation with hardware ac-

celerator

- A hardware simulation accelerator such as Zycad’s:
Paradigm XP-series[10] is applicable for the vali-

dationof the gate-level "design by executing com-

plex test programs and application programs. In

our CISC design, a Paradigm XP-2000 accelerator

was iticorporated with Verilog simulator though VXTI

software[10] in order t60 speed tp sirmnulation. The
system configuration -is-shown -inFig.”6." We were
able to boot MS-DOS in less than 48 hours’ simula-
tion using the accelerator for-the case’of HK386, an
Intel 80386 compatible microprocessor.

Fig. 6. Gate-level Verilog simulation with Zycad-acceleration

444

‘post-analysis tool compares two trace files: If some-

Comb4 = {4(FF2.FF3.Comb3);

Verilog XL - Programming - Software Board
Simulator 3 |
Language Keyboard
Interface i
- Video Display
Memory @0
, Zycad's » Interrupt Co’ntroller‘
vXi - - =
- Paradigm . Hard/Floppy Drivel

F. Consistency Check

In traditional approaches [4, ’5], simulation traces
of both a reference model and RTL model are
dumped. After finishing the long simulation, the

inconsistencies were detected, design-erro
ported. For. a long simulation, the trac :
may be enormously larger than several Giga bytes.
Moreover, dumping of trace file slow-downs the sim-
ulation speed by 5 or 6 -times. As an alternative,
we use a dynamic consistency check mechanism us-
ing IPC(Interprocess: Communications) in UNIX[11]
during the co-simulation. It neifhér tequires extra
trace files nor degrades the simulation speed.

StreC and MCV(or MCV and Polaris) run in par-
allel. When StreC completes one instruction execu-

- tion, StreC sends its results to MCV, while MCV
- waiting for the results of StreC compares the re-
“ceived résults with its own results and theén tells”

StreC whether the résults are consistent 5t not. Sim-
ulation stops when the differencés are detécted. Our:

‘experiment has shown that IPC yields a'speed degra-

dation of 10 - 20 %, depending on circuit size.

In MCV, all micro-operations are executed in a
single cycle. However, in StreC the micro-operatiolnis
can be delayed by more than oné cycle due to the
pipéline stall and the external interrupt handling de-
lay. Because 'of many advanced implementation-fea-
tures, such as pipeline, cache, delayed handling.and
buffer, two models may not be identical. For exam-'
ple; the instruction counter, specific registér values
and memory map may be shifted by one cycle, but
this does not mean errors in reality. An intelligence
is needed for the simulation engineer to dlﬂ"erentlate
the teal bug from artifacts. C

X window-based micro-architecture ‘probing tool
displays information such as register values, micto-
codes and memory content on the screén “as shown -
in Fig. 7. The designers eradicate the hardware bugs
using both the micro-architecture tool and Wavefoun '
dlsplayer of RTL trace. :

IH. PRODUCTIVITY
A. Debuggingi Cost

Dulmg the system-level simulation, many bugs are
detected at an early phase as shown in Fig. 8. Ounly
small percentage i.e., 15 % of bugs remaining to the
end of the design plocess occupies most of sunulatlon
time(50% of total debugging time). When the test
programs are applied to the fully integrated system-
level design, the amount of simulation time soars, sig-
nificantly degrading the design turnaround. There-
fore the design complexity of complex microproeéssor
madeé it necessaty to apply the “divide-and-conguer”

PL4.4

Fig. 7. Micro-architecture probing tool : Debugging
information such as instruction count, register value,
memory map, op-code, micro-code are shown with
forward /backward trace capability.

method, i.e., “module-by-module” test should pre-
cede the “post-integration” debugging. It is very
important that basic block tests are enhanced in the
earlier design phase to shorten the total verification
time.

Sometimes ‘a ‘careless’ design modification may
lead to malfunction of another block shown as a
deep canyon at 17 million instructions as shown in
Fig. 8. Regression tests should run in company with
the frontier RTL simulations in order to guarantee
that proposed bug correction did not corrupt other
behaviors.

Number of instruction

executed (unit: Million) o— Bug Occurrad

20 LI B S

 — T T T T
19 — - : i y
18
17

16

15

are three kinds of test suites. The first one is hand-
crafted test vector, the second one is very long se-
quence of instructions generated in a biased random
fashion. The final one is real-world application pro-
grams including operating systems.

The first hand-crafted codes are the by-product
of X-86 instruction behavior discovery program that
scrutinizes the real, virtual and protected model be-
havior of X-86 microprocessors. They are computer-
generated vectors with a hand-coded template by
architecture design team and test team for several
years. The total number of hand-crafted test vector
amounts to 500. The permutation, iteration and in-
terleaving of existing instruction sequences into new
sequences and many exceptional cases which rarely
happens in real application software stress the model
to the limit . ’ v :

The second test program comes from the random
test program generator, called Pandora shown in
Fig. 9. It focuses on producing long sequences ‘of
legal instructions assuming that thé random inter-
action of these instructions will exhaustively cover
all the test cases and produce conditions that rarely
happens. Now, we plan to develop more intelligent
ATPG which generates the high quality test vector
which guarantee the 100% path coverage and 100%
arc coverage. Given a directed graph of the FSM’s
or micro-code, it should generate the test programs
that cause the simulation to exercise every arc in the
graph with minimal redundancy.

_MPU Mods
KT

Addrwzsing Mode : AL
i s
(4 e & piae 4B
o v i g -a.Disp

o GasesOup . BasesDisp
Basesindox -4 {Scaled)index
L BusmetndoxsDiop 5 (ScabodyindonsDisp 15

1a
13

L 2% RENLINEE S NS A R N H B N I S BN R B A M

o [T S iy, i i
10 20 30 40 S0 60 70 80 90 100 130 120 130 140 150 160 170 180 190
Time (days)

Real mode Test Protected mode Test

Applications(Window3.1}

Fig. 8. Bug eradication curve to boot Windows3.1 on StreC

B. Test Suites

Good test vectors help find design bugs quickly
during the simulation. We deliberately try to stress
the design models to their limit. In our case, there

watructon Space . b wta State zat | |

Fig. 9. ATPG(Automatic Test Program Generator) called
Pandore generates more than 300 test programs with the
biasing information of instruction and operand type

C. Test Coverage and Profiler

This “debugging-and-resimulation” forms basi-
cally an endless loop in the microprocessor design.
The test coverage[4, 5, 6, 7] probably is the single
most important measure of the verification quality.

PL4.5 445

Just randomly generated test vectors for the verifi-
cation of the behavior of op-code cannot guarantee
the coverage of all the block interface protocols and
complex state machine traversals. State-of-the-art
microprocessors include complex hardware schemes
such as instruction pipelining, branch prediction, su-
perscalar multiple pipes, external bus buffering, mul-
tiprocessor cache, and many exceptional cases. Enu-
merating all the test combinations of various situa-
tions, signal paths, and FSM transitions is impossi-
ble.

T~s

11250
50-100
10150t
3011000

10015000
3001~10000
10001~50000
50001~

Fig. 10. Number of occtirrences of each of 256 1nstruct10ns in
running DOS applications. It is shown that some
instructions denoted by a ‘cross’ were not invoked at all.
(after 2 million instructions)

In our simulation environment,: Profiler gives test
coverage metrics such as instruction coverage, micro-

operation mix, FSM transition -coverage, pipeline -

stall event coverage, and interface protocol coverage.

For éxample, Figi 10 ‘shows the” mimbér ‘of ‘geétir:

rences of each of 256 instructions after the execution
of some “real-world” program consisting of 2 million
structions. It is shown that a significant number
of instructions were never tested:«These uncovered
op-codes or uncovered arcs in FSM might be r&spon-

sible"for sonie vicious bugs which may be captured -
at. the final verification phase. of even.too.latel . ..
- The test coverage metrics are used sub equentl. to

imp¥ove the qiiality of the test vector Setzand gives
the designers-a feeling for the overall eﬁ"ectlveness of

test vector set as shown in Fig. 11. Without mean ,

ingful test coverage metrics, ‘all simulation®time is
wasted by testing cases that are no longetr neéded to
Be tested, while sorme céses are fiever excited. h

D. Resta,rtablhtv

Tradltlonal simulation has an 1mportant Weak
point. Designers usually do not dump the signal
trace in the first simulation because it is impossi-
ble to know where the error should occurs: before-
hand, and the signal trace overburdens the simula-
tion speed by 5-6 times. Theréfére; if an error is
detected, designers simulate once more from the first

instruction to-the bug point to dump the signal trace’

within the small time interval as shown in Fig. 12.

smustionwith pe - %oRtested simulation with (IPC saver),

1
ond sim simulation for trace

debugging

Design Specification
Manual,Logic Analyzer|

Discovery Progra

Real Applications
DOS, Window,Linux,Win95)

Test. Suits
~800

Pandora(ATPG)|+~—— .- .
Biasing

/
MCcv
Ref . Difference ¢ StreC
eterence Monitor P
Model BTL model

Co-Simulation Environment

Pass/Fail Test Coverage | .|
op- m | PPe [micro- | -
code stalt |gode

Fig. 11. Test éoverage metrics are fed back to the automatic
test program gemnerator for more complete test.

"After the debugging, designers miodify the model and

re-simulate from the first instruction. This has been
a tedious but unavoidable process in the traditional
smlulator In our experlence‘ the simulation time is
as much as 15 times that of the debugging itself in
a traditional simulator for the microprocessor level
debugging.

Blig-detected

2nd sim gimulation for trace
Tadk window
Simulation Restart :

debugging

R simulation with (IPC, saver)
ardsim R SITUITO wth IPC. 2 sim ; e
pass i

Simulation Restart P25°

Fig. 12. Reduction of simulation time by the
save-and-restart feature of StreC

The key - point is to save this redundant simulation
time By providing restartability. StreC saves inter-
nal states at the completion of every K instruction
periodically. This is different from the trace dump.
Only the internal states such as flip-flop signals are
saved at a snapshot rather thanlong time trace for
all signals. This makes it possible to restart simula-
tion from arbitrary point by loading the saved snap-
shot. As most trivial bugs are detected and design
becomes stabilized, the minor modifications of design
have little effects on the system state. Restartabil-
ity plays a key role to find more bugs ina shorter
time by reducing the redundant simulation. Using
the restartability feature, the total simulation time
is minimized to 30% of the traditional simulation ap-
proach without restartability.

446 PL46

IV. REsSULT

We applied the proposed functional verification
methodology to the K486, which is an Intel 4867 M-
compatible microprocessor developed at KAIST.
K486 microprocessor consists of 32-bit integer unit,
64-bit floating point unit and a 8 K-byte cache as
shown in Fig. 13. :

Most of datapath and control logic blocks are built
from 0.8um CMOS library, while area and time-
critical blocks, such as clock, cache, TLB, shifter and
adder are designed by full-custom layout. Total 1.25
million transistors are integrated in 1.6 x 1.6 em?
area at 0.8um DLM CMOS process. A target work-
ing frequency is 60 MHz.

Fig. 13. Floorplan of the K486 microprocessor

In our K486 project, there were limited number of
designers within the very limited schedule as shown
in Fig. 14. One designer wrote the instruction level
behavior model, one wrote the micro-operation level
model, one wrote the system board model, and only
four designers wrote the RTL C model. But using an
efficient verification methodology, total several bil-
lion cycles are simulated on the RTL C model un-
til the tape-out. We were able to successfully boot
MS-DOS and Windows-3.1 on the StreC as shown in
Fig. 15.

fasiadid R il WA

m:"’"‘ im: : lmﬂ ‘Roat hode Test “m “mu«nml Winodw 3.1 md Appfcations “ [T

—te T efoston
phase ¢ phasez phesed ohase

Initial Design (17%) Integrstion (12%) Verification of Design{89%) Final Layout (12%)

Fig. 14. K486 design milestone

Table IT shows simulation time needed to boot var-
lous operating systems and compares the simulation
speed between C and Verilog description of K486.
Enormous speed advantage of StreC and SpeedSim
over event-driven simulator comes from the cycle-
based logic evaluation. In the cycle-based simula-

Fig. 15. Screen image showing the successful booting of
Windows 3.1 using StreC, which took 48 hours running
about 20 million instructions.

tor, the sequence of logic evaluation is determined
completely in the static fashion during the com-
pile time and the redundant signal transitions are
not evaluated in LCC(levelized compiled-code) sim-
ulator. This gives no expensive overhead of event
scheduling.

TABLE II
COMPARISON OF SIMULATION SPEED OF EACH MODELS FOR
BOOTING DOS(460,000) anp WiNDows3.1(20,000,000
INSTRUCTIONS) ON SParc20 (CPS: CycLEs PER SECOND)

execution execution time
Model speed(CPS) DOS | Windows3.1
Polaris 210 KHz 15 secs 20 mins
MCV 50 KHz 1 mins 50 mins
StreC 1.4 KHz 2 hours 2 days
SpeedSim/3-Verilog 0.6 KHz 4 hours 4.6 days
Verilog RTL 10 Hz 10 days 280 days
Verilog gate (with Zycad) 50 Hz 2 days 56 days

V. CONCLUSION

A functional verification methodology for complex
microprocessor was proposed in the paper. The ver-
ification is focused on fast simulation to remove log-
ical errors at the early design stages. The hardware
description based on C language was suggested. This
methodology was proven to be efficient in terms of
simulation speed over existing HDL simulator for the
most microprocessor designs especially in CISC mi-
croprocessor such as K486. Most of the design errors
can be identified through the simulation based on C.
We were able to boot real-world operating systems
and many application programs on those C models.
The test coverage measure and restartability concept
were also instrumental in minimizing the verification
cost.

PL4.7 447

REFERENCES G G [6] Richard A. Lethin, et.al., “MDP Design Tools and Meth-
] st ods”, in Proc. ICCD, 1992, pp.424-435
[1] AL: Sanglovanm Vmcentel].l t. a,l “Vériﬁcaitoriof Elec-
troic Systems” in Proc DA c; 4, pp: 106 111 7] Wa]_ker Anderson, “Logical Verlﬁcatlon of the NVAX
; in ol : CPU Chip Design”, in Proc. ICCD, 1992, pp 306-309

[2] Gopi Ga,napath et:all “Hardwa

tional Verlﬁcatlon of K5” it Pro [8] Douglas Day, “SpeedSim : The leader in Cycle- Based~

318 : Simulation”, 1996)
[3] Lawrence Yang,: et al “S\ystéme,esizgri Métheddlogy of [9] “Verilog-XL Reference Manual”, Cadence Design Sys-
UltraSPARC-I” ,in Proc DAC, 1995, pp.7-12 ‘tem Ingc., version 1.6, 1991 | . .
[4] Anoosh Hosseini, et.al., “Code Generation and Ana.ly- [10] “ZyCAD XPlus Logic Simulation”, Zycad Corporatlon
sis for the Functional Verification of Microprocessors” ;in 1994 ’

Proc. DAC, 1996, pp.305-310 C : L
. h o o [11]: W.R.. Stevens, “Advanced Programming in the UNIX

Michael Kantrowitz, et.al., “I"'m Done Simulating; Now " - Environment,” Addison-Wesley Publishing Company,
What? Verification Coverage Analysis and Correct- 1992. ' s '

ness Checking of the DECchip 21164 Alpha micropro-

cessor” in Proc. DAC, 1996, pp.325-330

=

448 PL4.8 "

