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Abstract- As t h e  complexity of micropro- 
cessor increases, functional verification becomes 
more difficult and  emerges as t h e  bottleneck of 
t he  design cycle. In this paper, we suggest 
a functional verification methodology, especially 
for t he  compatible microprocessor design. To 
guarantee t h e  perfect compatibility with previ- 
ous microprocessors, we developed these C mod- 
els in  different representation levels, a.e., Polaris, 
MCV(Mzcro-Code Verqfier) and  StreC. An  instruction 
behavioral level C model(Polarzs) is verified us- 
ing the  slowed-down PC. In  t h e  implementation 
of micro-architecture, a micro-operational level 
model(MCV) and  RTL model(StreC), both writ- 
ten in  C, are  co-simulated with consistency check- 
ing(1PC) between these two models. The  simula- 
t ion speed of C models makes i t  possible to test 
t h e  “real-world” application programs on  the  C 
model with a software board model( VPC). To in- 
crease t h e  confidence level of verifications, Pro- 
filer reports the verification coverage of t he  test 
program, which is fed vack t o  t h e  automatic test 
prograin generator( Pandora). Restartabzlity feature 
also helps significantly reduce the total  simulation 
time. Using t h e  proposed verification methodol- 
ogy, we designed and verified the K486, an Intel 
486-compatible microprocessor successfully. 

I .  INTRODUCTION 

The advancement of semiconductor technology has 
made it feasible to  integrate more than ten million 
transistors on a single chip and to operate at the 
clock speed of several hundred MHz. This astound- 
ing chip complexity has resulted in difficulties in the 
verification[l, 2 ,  3, 4, 5 ,  6, 71. Moreover, recent mi- 
croprocessors tend to maintain the instruction-level 
compatibility with the previous ones which saves 
huge efforts for application software development [ 2 ] .  
Though compat.ibility can be best guaranteed by 

an exhaustive simulation with real application pro- 
grams, the simulation time increases drastically as 
the design complexity increases and has been a bot,- 
tleneck in a complex microprocessor design. 

Therefore, it is crucial to verify the functionality 
of design and eliminate errors at an early stage of 
the design. Eradicating the functional bugs which 
are alive until the final gate level simulation requires 
excessively large amount of comput,ing time and de- 
bugging efforts. Efficient verification methodologies 
become vital to the success of microprocessor design 
and their significance will continue to increase as we 
move into more complex designs. 

Recently, the verification crisis of microprocessor 
design leads to hot research issues both in academia 
and industry. The hardware emulationr2], formal 
verification[l] and cycle-based simulation[8] have be- 
come the state-of-the-art verification methodologies. 
The cost of emulation hardware is very high and re- 
quires that  the gate level design be already finished. 
Therefore, it requires large turnaround penalty to 
fix gate-level bugs. The hardware description lan- 
guage(HDL) such as VHDL and Verilog is a conve- 
nient method to describe a hardware, and a cycle- 
based simulation shows a clear simulation perfor- 
mance advantage over an event-driven simulator[9]. 
On the other hand, the general purpose Verilog 
simulator is much slower than the custom-tailored 
simulation using C language. Although hardware 
accelerators[lO] yield significant speed-up for the 
gate-level design, they do not provide fundamental 
solution for the RTL or even for the behavior level de- 
sign. In this paper we suggest a low-cost simulation 
method based on three RTL C models, z.e., behav- 
ioral level, micro-operational level and RTL, and also 
the overall verification methodology using slowed- 
down PC,  software system modeling, and IPC( Inter 
Process Communication ). 

The proposed verification methodology is applied 
to the K486, which is Intel 80486 compatible micro- 
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processor This paper is organized as follows A 
proposed functional verification methodology is de- 
scribed in section 2 Section 3 deals with the pro- 
ductivity issue such as test program generation, test 
coverage analysis and restartability feature 
section 4 shows some verificati Its 

11. FUNCTIONAL VERIFICATION 

A. Design Flow 

A traditional top-down design flow for micropro- 
cessors is presented in Fig l (a) .  From the design 
specification, design is gradually refined and moved 
down to the physical implementation level An im- 
portant problem in the top-down design flow is how 
to maintaiii the consistency between the consecu- 
tive design levels As shown in Fig l ( b ) ,  we divide 
the description level in more detail such as C1, C:! 
and Cs, which represent the model of microprocessor 
written in C for behavioral, micro-operational and 
RTL respectively 

level 1 model 1 level of description I language 
C ,  1 Polaiis 1 Instruction behavior I C 
C:2 MCV Micro-operation 
C3 StreC RTL 
V I V4 1 RTL 

Specification Specification 

f 

(4  

onal tis. (b) proposed des 
microprocessors 

In our simulation-based approaches for micropro- 
cessor design, RTL design usiiig 
simulated with a reference model, 
level inodel or micro-operation 1 
Consistency is confirmed by interprocess communi- 
cations(1PC) in UNIX[11]. Through the whole de- 
sigil procedure of K486 microprocessor, we have used 
clean-room and top-down appro e design 
and verification as shown in Fig 

tioii set is specified, the instruction set simulator, 
called Polarzs is built As Table I shows, Polarzs 

Physical Functional 
implementation verification 

Fig. 2 K486 Design flow 

the behavior of X86 instruction 
describe the detailed architecture 

~ superscalar instructioii pairing, parallP1 
functional units, cache and buffering Represent,ing 
a higher abstraction level allows us to produce a ref- 
erence model that  contains very few bugs and runs 
at over 100 times the speed of Verilog RTL model 
This execution speed of Polaris makes 
run the “real-world” programs consist 
billion instructions on software model 
possible with commercial cycle-based 
gate-level HDL simulation even with hardware ac- 
celer at ion. 

To verify the instruction level compatibility of 
Polaris, the slowed-down PC without CPU called 
CMV(C Model Verafier) is used as shown in 
Fig 3 The host computer emulates the instructions 
through Polaris and the slowed-down PC is used as 
P C  mother board and peripherals The slowed-down 
PC and host computer are connected through the in- 
terface board which contains several FPGA chips to  
emulate the bus interface unit of the microproces- 
sor with the buffer circuit which receives and sends 
messages from and to  the host computer. 

The message contains information on the bus cy- 
cle which should be performed in microprocessor 
through input/output pads There is a minimuin 
clock frequency, f m z n ,  below which the stable oper- 

ed-down P C  is not possible If fm tn  

is less than the frequency of the Polaris, t,hen the in- 
terface circuit can be very simple, otherwise a com- 
plex circuit is required in order to  provide a buffer- 
ing and synchronization mechanism between slowed- 
down PC and host computer 
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m SlowdownedPC 1 7 

description features code lines Once the instruction behavior of Polaris is verified 

But for 

using CMV, the Polaris becomes a golden-reference Polaris Macro instruction behavior register 9,675 
MCV Micro-operation behavior register 18,534 

internal bus model for further detailed design stages. 
the micro-architecture level or RTL, the simulation StreC clock-level RTL Flip-flop,latch 55,415 
speed degradation is inevitable. Then the slowed- Phi 1 edge, Phi 1 level internal bus 
down PC can no longer be used for slow simula- 

model of PC environment is needed for the micro- 
architecture level and RTL simulation. 

Phi 2 edge, Phi 2 level combinational 
pipeline 

internal bus 
combinational 

pipeline 
timing 

model less than loo KHz’ Therefore a ‘Oftware Verilog Clock and event-based RTL Flip-flop,lat& 35,223 ~ 

HDL 

To verify all the cases which can occur in real sys- 

PC Monitor Nwy 

tem, such as hardware interrupts, multiple memory 

I I  I 
HMI SMI 

. 

Fig. 3. H/W and S/W co-simulation environment called 
CMV for the verification of C model 

C. Reference Model 

Co-simulation Environment 

I I I I 

Fig. 4.  CO-simulation environment for different design 
models(i.e., Polaris, MCV, StreC and Verilog) with 
VPC(Virtual PC). IPC dynamically checks the consistency 
between models during the simulation 

TABLE I 
DESCRIPTION O F  CPU MODELS IN VARIOUS LEVELS 

and 1 / 0  cycles, it is necessary to simulate through 
real-world programs rather than by znstructzons. To 
run the real-world programs, such as MS-DOS, Win- 
dow 3.1,  Linux, Window95, and application pro- 
grams in design model, a software model of system 
board called VPC(Vzrfua1 PC) is developed. The PC 
environment was modeled in UNIX workstation us- 
ing X window system and consists of memory system, 
hard/floppy disk, interrupt controller, video display, 
timer and so on as shown in Fig. 4. 

For the CISC microprocessors and FPU, one 
macro instruction consumes multiple cycles, there- 
fore one macro instruction is subdivided into a num- 
ber of micro-operations which is executed in one 
clock cycle. Micro-operations are closely related 
to the datapath hardware or exception handling 
scheme. MCV(Mzcro Code Verzfier) is a C model 
describing the micro-operation level behavior. Nei- 
ther Polaris nor MCV exactly matches the timing 
details as obtained via RTL model. However, the 
speed advantage of Polaris and MCV makes them to 
be used as “golden” reference model of RTL micro- 
architecture design. 

D. StreC : RTL C Model 

Traditionally, RTL description is based on HDL 
such as Verilog. To achieve high simulation speed, 
we described RTL operation in C language. This 

model called StreCaccurately describes the cycle-by- 
cycle synchronous logic behavior as shown in Fig. 5. 
All the registers, combinational signals and clocks 
are declared as global variables. All the signals are 
categorized into three types : flip-flop, latch and 
combinational signal. All the flip-flops are updated 
simultaneously at  the edge of clocks, P1E or P2E. 
The combinational logics are evaluated at the mid- 
dle point of clock phase P1L and P2L, while the latch 
is evaluated only one of transparent period, P1L or 
P2L. Top module calls all the subroutines for each 
block in succession at the two clock edges and two 
clock levels. 

As StreC is not event-driven, special care should 
be taken to allow signals to flow correctly between 
modules. Signal Flow Graph(SFG), which represents 
the precedence relations and temporal relations, is 
very useful for correcting many tricky timing prob- 
lems which, although unveiled during the C-level 
simulation, can later be detected as hardware bugs. 

To describe the synchronous circuit operation in C 
is not a simple job, it requires cautious efforts such 
as static signal ordering and asynchronous loop re- 
moval. But most of the design time is consumed by 
simulation rather than the description of design it- 
self. 

The speed advantage of C over general-purpose 
HDL is liken to the assembly programming over 
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F C‘onsistencj. (‘heck PiE PiL P2E P2L 

phllL= In traditional approaches [4, 51 ~ simulation traces 
of both a reference model and RTL model are phi2 7 l * L  

Coinhl = IIIFFI) 
Comh? = tZ(FFI FFZ) dumped. After finishing the long sim 

L o w  CI~ster  plh_edge() post-analysis tool compares two trace fil 
tencies were detected, design er 

For a long simulation, the t r a  
eiiormously larger than several 

hi2_lrvel(] 

Comh? = fl(FF4) 

Comb5 = F5IComb3) 
Comh4 = t4(FF2 FF3.Comb3) Moreover, dumping of trace file slow~-do.lvns tlie siin- 

P2E PIE j Lotchl =comh4 ulation speed by 5 or 6 tinies As an alternat,ive, 
we use a dynamic consistency check inechanisin us- 
ing IPC(Interprocess Communications) in 11 NIS[1 t] 
during the co-simulation It neither requires extra 
trace files nor degrades the simulation speed 

StreC and MCV(or MCV and Polaris) rim in par- 
allel When StreC completes one instructio 
tion, StreC sends its results to MCV, wlii 
waiting for the results of StreC 
ceived results with its own resu 
StreC whether the results are coiisi 

tops when the differences 
nt has shown that IPC yi 

Pi E 

IB (a1 IC1 

Fig 5 (a)Signal Flow Graph showing the clock timing of 
flip-flops(FF’s) a i d  latches, (b) symbols for SFG and (c) the 
corresponding RTL C description, 2-phase clocking scheme 
was assumed (In cycle-based simulation. phi1 is simply 
assumed to be the complement of ph 

compiler-assisted high level I 
Even though the hadware de 
ficult than the well-formalize 
many aspect,s, its simulation speed can be very fast 
than tlie general-purpose commercial simulation en- 

nly used to desigii and debug 
of IC486 The RTL model runs 

ing. 

dation of 10 - 20 5%. depending 011 circuit size 
In MCV. all micro-operations are executed 

single cycle. However. in StreC the micro-operat 
can be delayed by inore than one cycle due to  the 
pipeline stmall and tlie external interrupt handling de- 
lay. Because of many advanced impleineiitatioii fea- 
tures, such as pipeline, cache, delayed haiidliiig and 
buffer, two models may not be identical. For exain- 
ple, the instruction counter, specific regist,er values 
and memory map may be shifted bY 
this does not meal1 errors in reality. 
is needed for the simulation engineer 
the real bug from artifacts. 

ndow-based micro-architecture probing tool 
displays information such as register values, inicro- 
codes and memory content on the screen as shown 
in Fig. 7. The designers eradicate tlie hardware bugs 
using both the micro-architecture tool and waveforin 
displayer of RTL trace. 

program a t  1400 cycle/sec as shown in Table I1 

E Gate-Level Verilog Stmidation with hardware ac- 
celerator. 

A hardware simulation accelerator suc Zycad’s 
le for the vali- Paradigm XP series[lO] 

datioii of the gate-level 
~ test programs and 

000 a~celerat~or 
tor though VXI 

were 
ula- 

system configuration is shown in Fig 
able to  boot MS-DOS in less than 48 h 
tion usiiig the accelerator for the case 
Intel 80386 compatible microprocessor 

111 PRODUCTIVITY 
Verilog XL Programming 
Simulator 4. Debugging Cost 

During the system-level simulation, many bugs are 
detected at an early phase as 
small percentage z.e., 15 % of 
end of the design process occupies most of simulation 
time(50% of total debugging time) When the test, 
programs are applied to the fully integrated system- 
level design, the amount of simulation time soars 
nificaiitly degrading the design turnaround There- 

design complexity of coiiiplex microprocessor 
necessary to  apply the “divide-ancl-conquer” 

y-j:r:t 
Paradigm =----El 

Fig 6 Gate-level Verilog simulation with Zycad acceleiation 
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Fig. 7. Micro-architecture probing tool : Debugging 
information such as instruction count, register value, 
memory map, op-code, micro-code are shown with 
forwardjbackward trace capability. 

method, 2. e., “module-by-module’’ test should pre- 
cede the “post-integration” debugging. It is very 
important that  basic block tests are enhanced in the 
earlier design phase to shorten the total verification 
time. 

Sometimes a ‘careless’ design modification may 
lead to malfunction of another block shown as a 
deep canyon at 17 million instructions as shown in 
Fig 8. Regression tests should run in company with 
the frontier RTL simulations in order to guarantee 
that proposed bug correction did not corrupt other 
behaviors. 

+ B Y 0  Oecurrad 
Number of insfr~CtiOn 
executed IYmt Mtlllon) 

2 0  

- . - A  

< 1 . .  
, a - _  -.-l. 

i 

. , 1 h . 3  
. ’ - - L +  

1 

are three kinds of test suites. The first one is hand- 
crafted test vector, the second one is very long se- 
quence of instructions generated in a biased random 
fashion. The final one is real-world application pro- 
grams including operating systems. 

The first hand-crafted codes are the by-product 
of X-86 instruction behavior discovery program that 
scrutinizes the real, virtual and prot,ected model be- 
havior of X-86 microprocessors. They are computer- 
generated vectors with a hand-coded template by 
architecture design team and t,est team for several 
years. The total number of hand-crafted test vector 
amounts to  500. The 
terleaving of existing 

happens in real ap 
to the limit . 

action of these instructions will exhaustively cover 
all the test cases and produce conditions that, rarely 
happens. Now, we plan to develop more iiit,elligent 
ATPG which generates the high quality test vector 
which guarantee the 100% pat,h coverage and 100% 
arc coverage. Given a directed graph of the FSM’s 
or micro-code, it should generate the test programs 
that cause the simulation to exercise every arc in the 
graph with minimal redundancy. 

, Fig. 9. ATPG(Automatic Test Program Generator) called Time (days) 

Real mode Test Protected mode Test APP,iCallonOlW,ndoW3 ,, 
Pandora generates more than 300 test programs with the 
biasing information of instruction and operand type 

Fig. 8. Bug eradication curve to boot Windows3.1 on StreC 

C. Test Coverage and Profiler 

This “debugging-and-resimulation” forms basi- 
cally an endless loop in the microprocessor design. 
The test coverage[4, 5 ,  6, 71 probably is the single 
most important measure of the verification quality. 

B. Test Suites 

Good test vectors help find design bugs quickly 
during the simulation. We deliberately try to stress 
the design models to their limit. In our case, there 
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Just randomly generated test vectors for the verifi- 
cation of the behavior of op-code cannot guarantee 
the coverage of all the block interface protocols and 
complex state machine traversals State-of-the-art 
microprocessors include complex hardware schemes 
such as instruction pipelining, branch prediction, su- 
perscalar multiple pipes, external bus buffering, mul- 
tiprocessor cache, and maiiy exceptional cases. Enu- 
merating all the test combinations of various situa- 
tions, signal paths, and FSM transitions is impossi- 
ble. 

Discovery Progra 

Biasing 

1 
PassiFail 

Fig. 11. Test coverage metrics are fed back to the automatic 
test program generator for more complete test. 

Fig. 10 Number of OrcuIrences of each of 256 instructions in 
running DOS applications. It is shown that some 
instructions denoted bv a 'cross' were not invoked at all. 
(after 2 million instructions) 

In our simulation environment, Profiler gives test 
coverage metiics such as inst,ruction coverage, micro- 
operation mix, FSM transition coverage, pipeline 

rences of each of 256 instructions aft8er the execution 
of some "real-world'' program consistiiig of 2 million 
iiistruct,ions I t  is shown that a significant number 
of instructions were never tested 
op-codes or uncovered arcs in FSM might be respon- 
sible for some vicious bugs which 
at the final verificatioii phase or eve 

The test coverage metrics are used 
improve the quality of the test 
the designers a feeling for tlie o 
test vector set as shown in Fig 
ingful test coverage metrics, all simulation time is 
wasted by testing cases that are no 
be tested, while some cases are nev 

D. Rest art a bill t*y 

Traditioiial simulation has an important weak 
poiiit Designers usually do not dump the signal 
trace in the first simulation because it is impossi- 
ble to  kiiow where the error should occurr before- 
hand, and tlie signal trace overburdens the simula- 
tion speed by 5-6 times Therefore, if an error is 

ed, designers simulate once iiiore froin the first 
ction to the bug poilit, to  duinp the sigiial trace 

withiii the sniall time interval as shown in Fig 12 

After the debugging, designers modify t,he model and 
re-simulate from the first, instruction. This has been 
a tedious but unavoidable process in the traditional 
simulator. In our experience. the siinulatioii time is 
as much as 15 times that of the debugging itself in 
a traditional simulator for the microprocessor level 
debugging 

Fig. 1 2 .  Reduction of simulation time by the 
save-and-restart feature of StreC 

The key point i s  to  save this reduiidant simulation 
time by providing restartability StreC saves inter- 
nal states at the completion of every ]E( instruction 
periodically. This is different from the trace dump. 
Only the internal states such as flip-flop signals are 
saved a t  a snapshot rather than long time trace for 
all signals This makes it possible to  restart simula- 
tion from arbitrary point by loading the saved siiap- 
shot. As most trivial bugs are detected aiid design 
becomes stabilized, the ininor modifications of design 
have little effects on the system state Restartabil- 
ity plays a key role to  find more bugs in a shorter 
time by reducing the redundant siinulatioii Using 
the restartability feature, the total simulation time 
is miillmized to 30% of the traditional simulation ap- 
proach without restartability 
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IV. RESULT 

Model 

We applied the proposed functional verification 
methodology to the K486, which is an Intel i486TM- 
compatible microprocessor developed at  KAIST. 
K486 microprocessor consists of 32-bit integer unit, 
64-bit floating point unit and a 8 K-byte cache as 
shown in Fig. 13. 

Most of datapath and control logic blocks are built 
from 0.8pm CMOS library, while area and time- 
critical blocks, such as clock, cache, TLB, shifter and 
adder are designed by full-custom layout. Total 1.25 
million transistors are integrated in 1.6 x 1.6 cm2 
area at  0.8pm DLM CMOS process. A target work- 
ing frequency is 60 MHz. 

execution I execution time 
speed(CPS) I DOS I Windows3.1 Fig. 13. Floorplan of the K486 microprocessor 

In our K486 project, there were limited number of 
designers within the very limited schedule as shown 
in Fig. 14. One designer wrote the instruction level 

Fig. 15. Screen image showing the successful booting of 
Windows 3.1 using StreC, which took 48 hours running 
about 20 million instructions. 

tor, the sequence of logic evaluation is determined 
completely in the static fashion during the com- 
pile time and the redundant signal transitions are 
not evaluated in LCC(leve1ized compiled-code) sim- 
ulator. This gives no expensive overhead of event 
scheduling. 

TABLE I1 
COMPARISON OF SIMULATION SPEED OF EACH MODELS FOR 

BOOTING DOS(460,OOO) AND ~ I N D O W S ~ . ~ ( 2 ~ , ~ ~ ~ , ~ ~ ~  
INSTRUCTIONS) ON SPARC2O (CPS: CYCLES PER SECOND) 

behavior model, one wrote the micro-operation level 
model, one wrote the system board model, and only 
four designers wrote the RTL C model. But using an 
efficient verification methodology, total several bil- 
lion cycles are simulated on the RTL C model un- 
til the tape-out. We were able t o  successfully boot 
MS-DOS and Windows-3.1 on the StreC as shown in 
Fig. 15. 

-47 E-i-1 --,..I Im[--..-q -&*I- r-T - -c ~ ~~~ c- 
p*** PDu¶ prrl p**. 

M I I D * * O I ~ ~  m m " w u  "-L11*-ml - y l o u l I I x ~  

Fig. 14. K486 design milestone 

Table I1 shows simulation time needed to  boot var- 
ious operating systems and compares the simulation 
speed between C and Verilog description of K486. 
Enormous speed advantage of StreC and SpeedSim 
over event-driven simulator comes from the cycle- 
based logic evaluation. In the cycle-based simula- 

V. CONCLUSION 

A functional verification methodology for complex 
microprocessor was proposed in the paper. The ver- 
ification is focused on fast simulation to remove log- 
ical errors a t  the early design stages. The hardware 
description based on C language was suggested. This 
methodology was proven to  be efficient in terms of 
simulation speed over existing HDL simulator for the 
most microprocessor designs especially in CISC mi- 
croprocessor such as K486. Most of the design errors 
can be identified through the simulation based on C. 
We were able to  boot real-world operating systems 
and many application programs on those C models. 
The test coverage measure and restartability concept 
were also instrumental in minimizing the verification 
cost. 
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